Qualifying Dark Sky Parks

Kolláth Zoltán

Dark Sky Parks in Hungary

IDSPs recognized by IDA:

```
2009: (Nominated in Armagh, 2009)
Zselic Starry sky Park
Zselic Landscape Protection Area
supervised by Duna-Dráva National Park
```

2011: (Nominated in Kaposvár, 2010) Hortobágy Starry Sky Park In: Hortobágy National Park

Dark Sky Parks in Hungary

New Candidates:

Kőrös-Maros National Park

- Pusta of Dévaványa-Ecseg

Bükk National Park

Aggtelek National Park

- National Park + Zemplén LPA

Balaton Uplands National Park

- High Bakony LPA

National Parks in Hungary

Measuring methods we applied:

Calibrated DSLR + fisheye lens

Objective quality criteria (measurements)

Cinzano et. al	< 0.11 artificial light	0.11-3.0 artificial light	3.0-9.0 artificial light
.2001 Sky	contribution at zenith (as a	contribution at zenith (as a	contribution at zenith (as a
Brightness	fraction of natural	fraction of natural background)	fraction of natural background)
Model	background)		
NPS Method	Pending- propose -6.75	Pending- propose -8.00	Pending- propose -10.00
Total Sky			
Brightness			
Above 20° Alt.			
Unihedron Sky	Pending- propose 21.75	Pending- propose 21.00	Pending- propose 20.00
Quality Meter			

Dark-Sky Park Program (Version 1.31 - 2006)

Majority of proposals: SQM

But: SQM (old) vs. SQM L(E/U)

Objective quality criteria (measurements)

Cinzano et. al	< 0.11 artificial light	0.11-3.0 artificial light	3.0-9.0 ar ificial light
.2001 Sky	contribution at zenith (as a	contribution at zenith (as a	contribution at zenith (as a
Brightness	fraction of natural	fraction of natural background)	fraction of natural background)
Model	background)		
NPS Method	Pending- propose -6.75	Pending- propose -8.00	Pending- propose -10.00
Total Sky			
Brightness			
Above 20° Alt.			
Unihedron Sky	Pending- prop se 21.75	Pending-propose 21.00	Pending- propose 20.00
Quality Meter			

Cinzano 2001: Natural Sky Luminance (NSL) NSL 250 μ cd/m2 \simeq 21.75 SQM + 0.11 * NSL \simeq 21.64 SQM + 0.50 * NSL \simeq 21.31 SQM + 2.00 * NSL \simeq 20.56 SQM + 3.00 * NSL \simeq 20.25 SQM + 9.00 * NSL \simeq 19.26 SQM

Effect of Milky Way on SQM-LE values

- Many proposals contain fish eye images of the whole sky.
- Problem: calibration (laboratory, luminance meter, etc.)

But: Raw images contain useful information...

A proposed measure: Contrast of the Milky Way compared to the darkest part of the sky

Visibility of Milky Way depends on its contrast relative to the sky background!

$$C = (L_{MW}-L_{dark}) / L_{dark}$$

- RAW images provides the necessary information
- No absolute calibration needed (but for vignetting)
- Which part of the Milky Way?
 - Solution: construct a contrast map...

Calibration is necessary!

Luminance map

Gray-scale contrast map

False colour contrast map

Colouring scheme

C=0.0

0.2 0.4 0.6

0.8 (yellow)

1.0 (green)

1.2 (blue)

1.4 (black)

1.6 (turquoise)

Which part of the MW?

Mid latitudes:

Brightest blob in Summer Triangle

Examples

SQM: 19.6/19.8 C_{max} =0.6

Examples

Pro and contra...

- No calibration is necessary, just RAW image files and dark images
- Correlates with the real visibility of faint objects

BUT

- Depends on weather conditions (but it is true for all the other qualifiers)
- Depends on geographical location (position of the MW & it visible parts) — can be handled.

Work in progress...

Cross calibration contrast (C) vs SQM

You can help with RAW DSLR images (with dark frame) and SQM values

(zkollath@gmail.com)

Recommendation for IDSP tiers

Photopic vs. scotopic contrast

Colour of lighting (LED e.t.c)

It is not included in IDSP rules

BUT extremely important

- Night vision, visible sky
- ecological impacts
- > colour of the sky
 - Contrast for green and blue channels of the RAW images...

Effect of source colour to light pollution

- A measure:
- Provide the same photopic illumination/luminance on the road
- Measure/calculate the scotopic luminance of sky background 15km from the source
- Normalize with 0 UFR (Upper Flux Ratio) sodium lamp
- Following diagram: Ls/Ls(Na) vs a function of colour coordinates (x,y).
 - WLED: white LED, C-LED: monochrome LED
- Thanks for Károly Molnár (University of Óbuda) for spectral measurements of light sources used for the creation of the figure.

Relative sky luminance with different light sources

- Lighting code should rule out high colour temperature sources
- Switching sodium light to cold white LED is not an improvement!
- Even warm white sources provide a risk -> optimize for illuminance, dim after 10-11PM, etc...

One more issue...

Topology (geometry) of the Park

- no lower size limit (>50000ha – can be divided)

Different geometries:

- continuous with settlements inside
- continuous with no settlements inside
- mosaic like (usually with no cities, villages inside)
 - -> Not even chances to form IDSP

How to handle topology?

It should be included in IDSP rules...

Any recommendations?

www.astro-zselic.hu